Moment of inertia

Moment of inertia

According to Newton's first law, if any body is in a state of rest, then it remains in a state of rest and if it is. If it is moving in a straight line from the same trick, then it moves in the straight line from the same trick, unless it has to be replaced with some exterior forces and it should not change in the present state. These properties of the body that they oppose their state-change are called inertia (inertia).

Similarly, when a body rotates the back of an axis, then it has its tendency to resist its state-change. This quality of the body due to which it opposes the change in the rotation of an axis: the rotation of the body - the back of the axis: the inertia - the horizontal '. It's often To display. Rotation of any particle of the body - the surface of the axis: Inertia - the mass of the particle that is incomplete and its rotation - equals the product of the square of distance from the axis.

. Assuming M is a strong body of mass. Its vertical axis passing through its point of zero is to find the inertia - the horizontal. For this, the body is made up of several small particles. If the mass of these particles is M1, M2, M3,. . . . And rotate them - away from the axis R1, R2, R3, respectively. . . . . If so, the inertia of the particles - phonera na11, nepr:. . . . . Will be.

Therefore rotation of the whole body - the balance of the axis: the inertia - horizontal (i) the inertia of all particles - will be equal to the sum of the halves


Here ! (Sigma) means - the sum of all the positions. Thus, the backbone of a given axis is equal to the sum of all the particles of the particles and the sum of the products of the distance groups corresponding to their axis
Inertia - In the SI method of acceleration, Molecular  and C. G. S Method is '. Its immense formula is [ML]

From the above, it is clear that any body of the body of an axis depends on the inertia -
 (i) on the mass of the body,
 (i) the position of the axis relative to the body, and
(iii) on the distribution of mass in the body mass relative to the axis

When the position of the rotating axis of the body is changed, the inertia of the body changes - the horizontal. Therefore, its rotation with the inertia of a body - it is necessary to clarify the position of the axis

Rotating - Radius of Gyration:

 If any mass is considered centered on one point, its rotation - the distance per axis so that the distance of the body is multiplied by the mass of the body, rotation of the object - after the axis: . Strength - When the torque is received, this distance is rotating - the body of the body relative to the axis is called 'rotation - radius'

If a body of the mass of the mass is rotated by a rotating axis then the inertia is i


Where the rotation radius relative to the rotation axis of k body is

Therefore, the rotation of a body is called the rotating radius relative to the rotation axis of the body, the square root of the motion of the inertia and the
mass of the mass of the rotating axis.

Ohm's law

Ohm's law

In 1826, the relationship between the German scientist, Dr. George Simon Om, and the flow of current and current flowing through the direction of a conductor was expressed by a rule called 'Om Law'.

ohm's law

According to this rule, if there is no change in the physical condition (like heat) of the driver, then the ratio of the probability imposed on its ends and the current flows is fixed.
So if there is a probable variant on the crossing of the bark and the stream flowing in it, then according to the Om rule.


According to the determinant definition, the ratio of 'V' / 'driver' to 'electrical resistance' is R


In this way, according to the rule of Oh, unless the conduct of a conductor changes in heat and other physical conditions, the driver's resistance remains fixed even though the extent of the impact on the ends of the driver


Ohm's law is only true for metal movements

Capacitor and Use of Capacitors


A capacitor is an adjustment in which the amounts of charge are stored on it without changing the size of the driver. Suppose that a driver is given 5 charges, then its valid capacity becomes V. Then the driver's capacitance


  However, if we reduce the chance of the driver in any way, then more charges can be given to bring it back to the same extent, thus the capacitance of driver c will increase and increase.

capcitor and use of capcitor

16. Use of Capacitors

capacitor use in various purpose describe the given bellow

(1) To deposit the charge:

 The key function of the capacitor is to collect the charge. If there is a transient but strong current in a circuit, its best solution is to connect the ends of the circuit to the charging capacitor. Pulsed electromagnet, through which transient but intense magnetic fields are produced, receives electrons from the charged capacitors only.

 | (2) Energy depositing:

 Capacitors are not only for charging but also for energy. Enough energy is stored in the electric field installed between the plates of the charging capacitor. The device that accelerates the electrons is synchocyclodone, a large bank of capacitors in which the energy is stored and the machine keeps taking energy according to its requirement.

 (3) In electrical appliances:

Capacitors have a special place in many electrical appliances. When a stimulus circuit breaks suddenly, instead of breaking often, the spark is often produced. But if a capacitor is felt in the circuit, then the spark does not arise if the circuit induced by the breakdown of the circuit, charging the plateau of the capacitors. The capacitor is applied for the same work in the ignition system of the induction coil and the motor engine. Electric fan also has a valid motor capacitors

 (4) In electronic circuits:

 In almost all electronic circuits, capacitors are used. For example, in reducing the voltage in voltage in the power supply, in the transmission of pulsed signal and in the production and transmission of electromagnetic charge of radio frequency (i.e. transmission and transmission of radio and television programs) with capacitors an important role. _

 _ (5) In scientific study: 

The use of capacitor in scientific study is also less. By using different forms and shape plates in the capacitor, the electrical configuration of different configurations is established between them. In their respective areas, their behavior is studied by placing the absorbed substance.

Coulomb's law and Importance of the rule of Coolam:

Coulomb's law

  We have read that two similar types of fees back one another and the opposite type is mutually intruding. Attracted. This shows that a force works between two charges, which are called 'electric force'. the same . Between the allegations, the power force replication - this attraction between force and opposite charges - is the force. Even if electric charges are located in vacuum, they still have electrical power.
coulomb's law

. In 1785, French scientist Kulm gave a rule in relation to the force employed between two charges on the basis of experiments, which is called the 'rule of koolam'. According to this rule, there are two fixed points - the power of attraction or replication between charges, the sequential ratio of the product of the quantity of two orders and the sequential ratio of the curvature of the distance class between them. This force adheres to the line involved in those allegations.

Thus if the two point charge Q1 and Q2 are located at one distance of ' r ', then the force between them


Where K is a serum proportional element whose value depends on the medium between the charges and the amount of charge, distance and force if the force of the force 'Newton' is the number of distance meters and the amounts of charge and take place in the charge and are located in two charge (Nirvati) So the value of K is 9.0 x  by experiment
So the point between the points placed in the vacuum,


In this equation the Q1 = = Q2 = 1 coolom and absolute R = 1 meter then F = will be Newton.

Hence; 1 Coulom is a charge that replaces itself with the strength of utensils at the distance of 1 meter from its own equally in Nirvana (or air).

If the charge is located in the vacuum, then in the equation for the convenience, the sequential determinant K    is written


 constant     Apesail Zero is called electrification of nirvat.

Comparison with the force of gravity of the electric force:

We can compare the power force working between two charging objects in which the gravitational force is working between them. These two army work according to the rules, and they are active in both of them. But there are some differences between these two too:

(i) Power Force attraction - force can also be done and replica - force also; While gravity - force always attracts force force. It shows that the charge can be of two types while the mass is only one type.

 (ii) Electrical force depends on the medium between two charges. Whereas gravitational force is not dependent on the medium between two people.

 (ii) The force of force from the gravitational force is very strong. For example, between two protons, the electric force is 10 times larger than the force of gravity between them. Between two electrons it is 10 times larger than that.

Importance of the rule of Coolam:

 The law of coolam is true from very great distances to very little distance from atomic distance (= meters) and atomic distance (= meters). Therefore, this rule is not only knowledge of forces operating between powers, but also helps to explain those forces that cause the atom's electrons to bind to their nuclei to make two or two atoms, and with more atomic molecules Talk, and many atoms or molecules interact with each other and make concrete and preto. Most of the forces that experience in our daily life, which are not gravitational force, are electric power. | Another, very intense attraction - acts between the particles present in the nucleus of the atom (protons and neutrons), which acts as a force that connects these squads with each other. This is called 'nuclear force'. This force does not depend on the charge or discharge of the particles, nor does it have any relation with the rule of Kulam. But this does not mean that the thermal power replication does not exist between protons (within the nucleus). Power replication force is present (though it is atomic attraction - very small in front of force) and plays an important role within the nucleus. If this force is not there then the heavy nucleus is not radioactive and heavy elements (which are temporary) before uranium are permanent.

chemistry and branches of chemistry and Importance and expansion of chemicals

What is chemistry
Is a branch of chemistry under which the composition and properties of the substances are studied in their structure and changes in them
In ancient times, the rise of chemicals came in the form of art and crafts; Chemistry developed in the form of chemical arts and crafts till the 17th century was born in the 17th Century. Modern art is not science
Chemistry is an experimental science, which is related to the study of substances, given the extraordinary modern development of chemistry, it has been divided into several branches. The major  chemicals are as follows
chemistry and branches of chemistry and  Importance and expansion

1 Inorganic chemicals - All elements and compounds are studied under it (excluding organic compounds)

2 Organic Chemistry - All organic compounds are studied under it

3 Physical Chemistry - Under this, rules and principles of chemical reactions are studied.

4 Analysis Chemistry - The methods for determining the quantity and quantification of the substances are studied.

5 Industrial Chemistry - The rules, reactions, methods etc. are studied in connection with the creation of huge results of the substances under it.

6 Biochemistry - It involves chemical reactions occurring in biosynthesis and chemicals obtained from animals and plants.

7 Agricultural Chemistry - Under this, chemicals related to agriculture are studied.

Importance and expansion of chemicals

In modern life, chemistry is a very important place. The chemistry of human society in almost all areas. . Designed to make human life prosperous, prosperous, safe and prosperous. Chemical contribution is important in the national economy. The success of the country's development plans depends on the application of some chemicals. All small and large industries require chemical materials. Acid, alkalis and salt metallurgy, metal-purification, petroleum finishing and used in the production of glass, soap, paper, textile, fertilizer, explosive, pigment, drugs etc. Molecular acids, nitric acid, ammonia, cestolic soda and chlorine are pillars of industries. Iron, copper, aluminum, zinc, nickel etc. Many types of alloy - metal, brass and steel - are used in making industries and many things of daily life. Many useful items are made from plastic, teflon, polythene, synthetic rubber and other polymer. The fabrics are made of artificial silk, wool and yarn. Pesticides, pandemic etc. protect crops. Modernities protect varieties and lives. Oils, fats, proteins, carbohydrates, salts and vitamins are an essential part of our diet.
1. Agriculture - fertilizers, insecticides, pesticides etc.

2 Textiles - Artificial silk, wool, artificial thread etc
3. Building and road construction: - Cement, steel, wire etc.

 4. Health and Life - Medicine, Vitamin Antibiotics etc.

 5. Fuel - Gasoline, Diesel, Kerosene, CNG Gaseous Money, LPG etc.

6. Industry cement, glass, textiles, paint, rubber, plastic, leather. 
Steel, sugar, fertilizer etc. Almost all industries use different raw materials.

 7. War Material: Explosive.

 8. Power generation -: Atomic energy, battery, dry cell etc.

9. Metallurgy: Metal - Extraction, Metal - Finishing, Alloy - Metal.

10. Entertainment: Gramophone record, photo film, photography, movies, colorful films, tape, CD etc.

11, Beauty of beauty: oil, perfume, kim, powder, lipstick, nail polish, soap, shampoo etc.

12. Clarifiers: Soaps, insecticides, organic solvents etc.

13 manure - manure preservatives, artificial honey

14 Refrigeration & Air Conditioning - Refrigerators, Fraun

Cutting a cube & Identifying the cubic or cuboid after cutting it

Cutting a cube

It is a simple fact that if a wood or rod is to be cut in two equal parts, then we cut it one. Similarly, if the wood or rod is cut into three, four or five equal parts, then we cut it once, Or cut the bar n times, it cuts (N-1) times
top cube, middle cube, central cube,intermediate cube

If the cube with an 8 cm arm has to be cut into small cubes of 2 cm, then each surface will have 
N = (  8/2 )  = 4 sections and to divide it into four sections, the cube is divided from three sides to  ( N-1 ) = ( 4 -1) = 3 times, and after partition, = = 64 small cubes will be received

If a cube is to be cut into 8 small cubes, then the first cube root of 8 is called ∛8 =   = 2. In this case, we get 2 cubic roots, namely the cube from one on each side (n-1) On cutting, we will get 8 small cubes

Identifying the cubic or cuboid after cutting it

After cutting a small cubic material into a cub, a cube or cuboid is seen on the various parts of the cube or cuboid

Top cube - Such cube is located at the top of the corner ie every lane of its cube is equal to eight, because any cube has eight top or corners.

Middle cube - Such cube is located right in the middle of each edge

Central cube - Such cube is located at the right center of each surface

Intermediate cube - Such cube is located in the middle of the central cube of each surface, it is not visible from the outside, it is called the Kuclias cube.

The number of total small dances obtained after dividing the larger cube into smaller cubes =


Number of top cube                    =             6 
Number of middle cube              =            12(n-2)
Number of central cube              =            
Number of intermediate cube    =